Frequency limits on aortic baroreceptor input to nucleus tractus solitarii.
نویسندگان
چکیده
The frequency of baroreceptor volleys to the central nervous system can influence the fidelity of baroreceptor signal transmission and thus may affect baroreflex regulation of blood pressure. We examined 1) the extent to which frequency-dependent depression of aortic baroreceptor signals was initiated at the first central synapse between primary baroreceptor fibers and second-order nucleus tractus solitarii (NTS) neurons; 2) whether the pattern of baroreceptor input influenced the depression; and 3) the potential relevance to baroreflex sympathoinhibition. In urethan-anesthetized rats, NTS action potential responses of neurons classified as second or higher order and averaged lumbar sympathetic nerve activity responses were simultaneously measured during 100 aortic depressor nerve stimuli delivered in constant or phasic patterns (0.8-48 Hz). Frequency-dependent depression was initiated at second-order neurons, with NTS responses decreasing to a 72% response rate at 48 Hz; the depression was greater at higher-order neurons; responses decreased to a 30% response rate. The depression was slightly but significantly greater with phasic inputs. Curve fitting suggested that synaptic depression may limit baroreflex sympathoinhibition. Thus frequency limits on baroreceptor inputs at NTS synapses may affect baroreflex function.
منابع مشابه
Inhibition of baroreflex by angiotensin II via Fos expression in nucleus tractus solitarii of the rat.
We evaluated the modulatory action of angiotensin II at the nucleus tractus solitarii on spontaneous baroreceptor reflex response, the angiotensin subtype receptors involved, and the role of Fos protein in this process, using Sprague-Dawley rats anesthetized with pentobarbital sodium. Microinjection bilaterally of angiotensin (Ang ) II (5, 10, 20, or 40 pmol) into the nucleus tractus solitarii ...
متن کاملElevated Fos expression in the nucleus tractus solitarii is associated with reduced baroreflex response in spontaneously hypertensive rats.
We delineated the functional role of Fos protein at the nucleus tractus solitarii in the manifestation of reduced baroreceptor reflex control of heart rate during hypertension, using spontaneously hypertensive rats (SHR), stroke-prone SHR, Wistar-Kyoto rats, or Sprague-Dawley rats. Microinjection into the bilateral nucleus tractus solitarii of an antisense oligonucleotide that targets against t...
متن کاملPressor effect of blocking atrial natriuretic peptide in nucleus tractus solitarii.
Previous studies have shown that microinjection of atrial natriuretic peptide into the caudal nucleus tractus solitarii produces significant increases in local neuronal firing rate associated with reductions in arterial pressure in anesthetized Wistar rats. Single units excited by microinjection of atrial natriuretic peptide into the caudal nucleus tractus solitarii were also excited by activat...
متن کاملAtrial natriuretic peptide modulates baroreceptor reflex in spontaneously hypertensive rat.
Our previous studies have suggested that atrial natriuretic peptide in the caudal nucleus tractus solitarii is involved in the centrally mediated regulation of blood pressure in the salt-sensitive spontaneously hypertensive rat (SHR). The current study tested the hypothesis that endogenous atrial natriuretic peptide in the caudal nucleus tractus solitarii participates in baroreceptor reflex con...
متن کاملComparison of 1-hour and 24-hour blood pressure recordings in central or peripheral baroreceptor-denervated rats.
We compared the mean arterial pressure and heart rate activity of conscious, unrestrained rats during 1-hour and 24-hour continuous recording sessions, 3 to 4 weeks after either sinoartic denervation, placement of electrolytic lesions in the nucleus tractus solitarii, or sham operations. Sinoaortic denervation and nucleus tractus solitarii lesions both eliminated the reflex bradycardia to a phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 278 2 شماره
صفحات -
تاریخ انتشار 2000